Thermodynamics of Quantum Measurements
- Supervisor: Nicolas Cerf
- Research center: Centre de recherche - Quantum Information and Communication (QuiC)
- Research start date: 15.02.2021
Description
Measurement is of central importance in the foundations of quantum mechanics, and its use is ubiquitous in the emerging quantum technologies. In the most general terms, a quantum system is measured when it undergoes an appropriate interaction with a macroscopic measuring apparatus, so that the transitions of some variable of the apparatus, such as the position of a pointer along a scale, registers the value of some observable of the system.
Given that measurements are physical processes, it stands to reason that they are subject to the fundamental laws of nature, such as the laws of thermodynamics. In this research project, I wish to determine how the laws of thermodynamics, such as conservation of energy, restrict the types of quantum measurements that can be performed.
Publications
M. H. M., T. Miyadera, L. Loveridge, "Measurement disturbance and conservation laws in quantum mechanics", Quantum 7, 1033 (2023)
M. H. M, T. Miyadera, "Quantum measurements constrained by the third law of thermodynamics", Phys. Rev. A 107, 022406 (2023)
M. H. M., "Thermodynamically free quantum measurements", J. Phys. A: Math. Theor. 55 505304 (2022)
M. H. M., "Classicality of the heat produced by quantum measurements", Phys. Rev. A 104, 062202 (2021)
M. H. M., "Self-consistency of the two-point energy measurement protocol", Phys. Rev. A 103, 042214 (2021)
H. J. D. Miller, M. H. M., M. Perarnau-Llobet, G. Guarnieri, "Joint statistics of work and entropy production along quantum trajectories", Phys. Rev. E 103, 052138 (2021)
H. J. D. Miller, M. H. M., M. Perarnau-Llobet, G. Guarnieri, "Thermodynamic uncertainty relation in slowly driven quantum heat engines", Phys. Rev. Lett. 126, 210603 (2021)
M. H. M., A. Auffèves, J. Anders, "Energetic footprints of irreversibility in the quantum regime", Communications Physics 3, 89 (2020)
M. H. M., A. Romito, "Conditional work statistics of quantum measurements", Quantum 3, 175 (2019)
M. H. M., A. Romito, "Efficiency of a cyclic quantum heat engine with finite-size baths", Physical Review E 100, 012122 (2019)
M. H. M., A. Romito, "Symmetry constrained decoherence of conditional expectation values", Universe 5, 46 (2019)
C. Elouard, M. H. M., "Work, Heat and Entropy Production Along Quantum Trajectories", Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, pp. 363-393, (2018)
M. H. M., H. Choi, M. E. Trusheim, A. Bayat, D. Englund, Y. Omar, "Low-control and robust quantum refrigerator and applications with electronic spins in diamond", Physical Review A 97, 042124 (2018)
M. H. M., J. Anders, "A quantum Szilard engine without heat from a thermal reservoir", New Journal of Physics, 19, 113026 (2017)
M. H. M., M. Mohseni, Y. Omar, "Minimising the heat dissipation of quantum information erasure", New Journal of Physics, 18, 015011 (2016)
G. W. Morley, P. Lueders, M. H. M., S. J. Balian, G. Aeppli, C. W. M. Kay, W. M. Witzel, G. Jeschke, T. S. Monteiro, "Quantum control of hybrid nuclear-electronic qubits", Nature Materials 12, 103–107 (2013)
S. J. Balian, M. B. A. Kunze, M. H. M., G. W. Morley, W. M. Witzel, C. W. M. Kay, T. S. Monteiro, "Measuring central-spin interaction with a spin bath by pulsed ENDOR: Towards suppression of spin diffusion decoherence", Physical Review B 86, 104428 (2012)
M. H. M., G. W. Morley, A. Nazir, T. S. Monteiro, "Analysis of quantum coherence in bismuth-doped silicon: a system of strongly coupled spin qubits", Physical Review B, 85, 094404 (2012)
M. H. M., G. W. Morley, T. S. Monteiro, "Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances", Physical Review Letters, 105, 067602 (2010)